rereerr 1]

AVErsc

NartionaL Enercy Research Scientiric Compuring CeNTER

Interval of Validity Service
IOVSve

ATLAS Software Week
Architecture Session

11/18/2002

Charles Leggett <CGLeggett@Ibl.gov>

Interval of Validity Service reosd]

||||

+ Purpose:
e associates valid time ranges with objects
e triggers updates of data, and validity ranges when object enters a new
validity range
e allows use of call back functions

+ Use cases:
e alignment data
e calibration objects
e detector description information
e anything which has a timed validity range associated with it

y v
Charles Leggett <CGLeggett@Ibl.gov> 2 - m

Access Patterns reeeed

||||

+ Two types of access/usage patterns:

e pure data, held in dB, used as a data member inside a class. Only
needs to have 1t’s contents refreshed when it enters a new validity
range.

e Container class, eg GeoNode, which has no representation inside the
dB, contains one or more IOV data objects from dB as data members.
Needs to know when any of its constituent members enters a new
validity range, at which point a callback method is triggered.

+ No overlap between these patterns
e will never have an IOV data object which needs a callback

e will never have a container class which has data stored in dB

y v
Charles Leggett <CGlLeggett@Ibl.gov> 3 4 m

Class Example m

HERKELEY LAE

class myIOVClass {
public:
StatusCode CallBackFcn (list<string> &dbKeys) ;

private:

DataHandle<CalAlign> m_alignl;
DataHandle<CalAlign> m_alignZ2;

myIOVAlg2* that;
I

myIOVClass::initialize () {

p_SGSvc—>bind (m_alignl, dBkeyl) ;
p_SGSvc—>bind (m_align2, dBkey?2);

p_I0VSvc—->regFcn (this, &myIOVClass::CallBackFcn, m_alignl);
p_I0VSvc—>regFcn (this, &myIOVClass::CallBackFcn, m_align2);

p_I0VSvc—>regFcn (this, &myIOVClass::CallBackFcn,
that, &myIOVClass2::0therCallBackFcn);

y v
Charles Leggett <CGLeggett@Ibl.gov> 4 - m

Sequence Diagram

. A
rerenrs ‘m

Alg Handle StoregateProxy PPSvec IOVCnv 1I0VSve CondDB RootCnv
regProxy(clid,key)
—qr ————————— M BN SN O S B S S B S B B B S B S S S S B B BN B e e e . —-—
% bind(T,key) bindHandI}e(handIe)
E regFcn(this,&Fcn,T)
5 >
- accessData() createObj(IOA) getODbj(I0A)
> > > P
o T DataObj* DataObj* DataObj* IOV,I0A2
+
3 < recordAddress(I0A2)
) createObj() IOA2
b >
® DataObj*
N ataObj
—>
%
T*
< reset() reset()
% reset(I0OA2
T o
callback(dbKey)
y v
: W ERSC]

Charles Leggett <CGLeggett@Ibl.gov>

Sequence e

||||

+ ProxyProviderSvc registers Proxy (dBkey) with IOV Svc

4+ InInitialize () , Cl|9 binds DataHandle<alignbData> with
StoreGate, using the same dBkey as the PPS

+ Algorithm registers container class (eg GeoNode) with
10vVsve->regFen (), supplying callback fcn and DataHandles as
parameters.

+ At first deref of the DataHandle, call is passed through to
Proxy, which calls create0Obj (10A) on IOVCnv converter.
TOVCnv calls getObj (10A) on IOVSvc, which first talks to
CondDB to retrieve storage location of an element given a
(Clid,dbKey) pair. It gets back an IOV and an TOA which points
to the actual location of the data. The IOVSvc adds the IOV
to its list of registered intervals. The IOSvc then calls
createObj () on the persistency converter for the actual
data using this information, and gets back a DataObj*. The
DataObj* is passed back through the chain of sequences to

the Algorithm eventually being converted to a T* TS
Charles Leggett <CGLeggett@Ibl.gov> 6 a

Sequence (cont) rereny] B

||||

‘ 4 The next time the DataHandle is derefed, a T is
automatically returned from the Proxy.

+ At the start of each event, the IOVSvc parses its list of
registered entries to see if any are out of range. When it
finds one, it first resets the corresponding proxy, then
triggers the registered callback function. The callback
function gets a list of the keys of the items which have gone
out of range as a parameter.

4+ The next time one of the DataHandles is derefed, the initial
sequence is replayed, getting back a new IOV and data.

y v
Charles Leggett <CGLeggett@Ibl.gov> 7 WERSC

Things Needed eee

||||

+ Proxy Provider Service
+ StoreGate::bind(T key) - slightly different from retrieve()

+ Additions to caching policy of DataHandle. Doing a simple
reset on the current Proxy isn't enough - the DataHandle
keeps its own cache of the data. So the handle has to be
informed that its cached data is invalid, or do a check itself
every time to see if its Proxy has been reset. Latter is easier,
since there can be a many to one relationship between handles
and proxies, and the proxies would have to keep track of all
the handles pointing to them, but involves an extra dynamic
cast (2 of them really) as the Proxy doesn't know the type of
the DataHandle pointing to it. Best to have a
publish/subscribe relationship between DataHandle and Proxy,
so Proxy can reset Handle when needed.

y v
W ERSC]

Charles Leggett <CGLeggett@lbl.gov> 8

Changes to DataHandle et al

. A
rerrers ‘m
Eﬁ;;;;i\h

+ DataHandle

e inherits from IResetable, declares reset() method

+ DataProxy

e list of bound handles (1ist<IResetable*>)
e bindHandle (IResetable*), unbindHandle (IResetablex*)
e resetBoundHandles ()

4+ StoreGate

e ProxyProvider
e bind()
« like retrieve, but also associates Handles with Proxy

Charles Leggett <CGLeggett@Ibl.gov> 9

y v
W ERSC]

IOVSvc %

HERKELEY LAE

ConversionSer IIncidentListe
vice ner
IOVSve {

public:
StatusCode regProxy(DataProxy *);
StatusCode regFcn(void (T::*fcn)(), T* obj, DataHandle<H> handle);
StatusCode regFcn(void (T1::*fcnl)(), T1* obj, void (T2::*fcn2)(), T2* obj);
private:
set<DataProxy*> m_proxies;
map<DataProxy*, IOVEntries* > m_entries;
multimap<DataProxy*, boost::function<StatusCode>* > m_proxyMap;
multiset<IOVEntry, IOVEntryStartCriterion> m_startSet;
multiset<IOVEntry, IOVEntryStopCriterion> m_stopSet;

}

y v
Charles Leggett <CGLeggett@Ibl.gov> 10 - m

Associated Classes N

HERKELEY LAE

IOVTime
IOVTime (int)
IOVTime (EventID)

unsigned long long m time

IOVRange
IOVTime m start
IOVTime m stop

IOVEntry

DataProxy* m proxy
IOVRange* m range

Charles Leggett <CGLeggett@Ibl.gov>

y v
W ERSC]

11

Internals of IOVSvc %

HERKELEY LAE

+ indexing is done via pataProxy*
4+ IOVs are held in map<DataProxy*, IOVEntry*>
+ Callback functions are

multimap<DataProxy*, boost::function<StatusCode>* >

+ IOVs are ordered in two sets:

std::multiset<IOVEntry*,IOVEntryStartCritereon> m startSet;
std: :multiset<IOVEntry*,IOVEntryStopCritereon> m stopSet;

m_startSet is ordered by decreasing start time, m_stopSet is ordered by increasing
end time. As a result of this ordering, when the sets are scanned at the beginning of
each event for entries that need to be marked invalid, as soon as the first valid
entry is found in each set, the scanning can be stopped as one is assured that all
subsequent entries are valid.

4+ When invalid entries in these multisets are found, the associated DataProxy™*
is added to a list. At the end of the scan, the IOVs of these DataProxies are
updated, the DataProxies are reset (and thus the associated DataHandles) and
the associated callback functions are activated.

y v
Charles Leggett <CGLeggett@Ibl.gov> 12 WERSC

What’s Next %

HERKELEY LAE

+ This is still a prototype.

+ We haven't really decided yet the best way to do
the connection between the DataHandle and
DataProxy so that the reset is properly done.

4+ Interface to conditionsDRB still needs to be refined.

4+ Plan to have it in 6.0.0

y v
Charles Leggett <CGLeggett@Ibl.gov> 13 WERSC

